

O.P. JINDAL SCHOOL, SAVITRI NAGAR
PERIODIC TEST – I (Round-1) (2025-26)

CLASS-XI	MAX.MARKS-20
SUBJECT-PHYSICS	MAX.TIME-1 HOUR

General Instruction:-

- (i) All questions are compulsory. There are 12 questions in this question paper with internal choice.
- (ii) **SECTION –A:** Question numbers 1 to 6 are MCQs, carrying 1 mark each.
- (iii) **SECTION –B:** Question numbers 7 to 10 are short answer questions carrying 2 marks each.
- (iv) **SECTION –C:** Question numbers 11 and 12 are long questions carrying 3marks each.
- (v) There will be internal choices in some of the question of section B and section C.

SECTION A

Q1. The dimensions of universal gravitation constant is

(a) $[M^{-1}L^3T^{-2}]$	(b) $[ML^2T^{-1}]$
(c) $[M^{-2}L^3T^{-2}]$	(d) $[M^{-2}L^2T^{-1}]$

Q2. The velocity v of a particle at time t is given by $v=at+\frac{b}{t+c}$, where a , b and c are constants.

The dimensions of a , b and c are

(a) $[L]$, $[LT]$ and $[LT^{-2}]$	(b) $[LT^{-2}]$, $[L]$ and $[T]$
(c) $[L^2]$, $[T]$ and $[LT^{-2}]$	(d) $[LT^{-2}]$, $[LT]$ and $[L]$

Q3. If $y = A \sin \left(\frac{2\pi}{\lambda} (ct - x) \right)$, where x and y are in metre, then

(a) the unit of λ will be same as that of x and A	(b) the unit of $(ct - x)$ will be same as that of $\frac{2\pi}{\lambda}$
(c) the unit of λ will be same as that of x but not of A	(d) the unit of c is same as that of $\frac{2\pi}{\lambda}$

Q4. $\frac{h}{2\pi}$ is the dimensions of

(a) Velocity	(b) Momentum
(c) Energy	(d) Power

Q5. The dimensional formula for universal gas constant R is

(a) $[ML^2T^{-2}mol^{-1}K^{-1}]$	(b) $[ML^3T^{-1}mol^{-2}K^{-2}]$
(c) $[M^3LT^{-1}mol^{-1}K^{-1}]$	(d) $[M^3LT^{-2}mol^{-1}K^{-2}]$

Q6. Which of the following pairs does not have same dimensions?

SECTION B

Q7. The frequency 'f' of vibration of a stretched string depends upon its length l , its mass per unit length ' m ' and the tension T in the string. Obtain dimensionally an expression for frequency f .

OR

Check the correctness of the relation $\tau = I\alpha$, where τ is the torque acting on a body, I is the moment of inertia and α is angular acceleration.

Q8. Find the dimension of $\frac{a}{b}$ in the equation of $F = a\sqrt{x} + bt^2$, where F is the force, x is distance and t is time.

Q9. Find the value of 100 J on a system which has 20 cm, 250 g and half minute as fundamental units of length, mass and time.

OR

Calculate the dimensions of force taking velocity (v), density (ρ) and frequency (f) as basic quantities.

Q10. Write 2 limitations of dimensional analysis.

SECTION C

O11.(i) Differentiate between Fundamental and derived physical quantities .

(ii) Write the dimensional formula of following physical quantities:

(a) Resistance
 (b) Boltzmann's constant

OR

Derive an expression for centripetal force "F" acting on a particle to moves mass "m" moving with a velocity "v" in a circle of radius "r".

Q12. Check the following equation is dimensionally correct:

(i) $S = ut + \frac{1}{2}at^2$, where S is displacement , u is velocity , a is acceleration and t is time.

(ii) $v = \sqrt{\frac{2GM}{R}}$, where v is velocity , G is universal gravitation constant , M is mass and R is radius.

OR

Q1. Find the dimensions of $a \times b$ in the relation : $P = \frac{b - x^2}{at}$, P is pressure , x is distance and t is time .